Abstract
First time right is one major goal in powder based 3D metal printing. Reaching this goal is driven by reducing life cycle costs for quality measures, to minimize scrap rate and to increase productivity under optimal resource efficiency. Therefore, monitoring the state of the powder bed for each printed layer is state of the art in selective laser melting. In the most modern approaches the quality monitoring is done by computer vision systems working with an interference on trained neural networks with images taken after exposure and after recoating. There are two drawbacks of this monitoring method: First, the sensor signals - the image of the powder bed - give no direct height information. Second, the application of this method needs to be trained and labeled with reference images for several cases. The novel approach presented in this paper uses a laser line scanner attached to the recoating machine. With this new concept, a direct threshold measure can be applied during the recoating process to detect deviations in height level without prior knowledge. The evaluation can be done online during recoating and feedback to the controller to monitor each individual layer. Hence, in case of deviations the location in the printing plane is an inherent measurement and will be used to decide which severity of error is reported. The signal is used to control the process, either by starting the recoating process again or stopping the printing process. With this approach, the sources of error for each layer can be evaluated with deep information to evaluate the cause of the error. This allows a reduction of failure in the future, which saves material costs, reduces running time of the machine life cycle phase in serial production and results in less rework for manufactured parts. Also a shorter throughput time per print job results, which means that the employee can spent more time to other print jobs and making efficient use of the employee’s work force. In summary, this novel approach will not only reduce material costs but also operating costs and thus optimize the entire life cycle cost structure. The paper presents a first feasibility and application of the described approach for test workpieces in comparison to conventional monitoring systems on an EOS M290 machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.