Abstract
AbstractObject tracking is commonly used in video surveillance, but typically video with full frame rate is sent. We previously have shown that full frame rate is not needed, but it is unclear what the appropriate frame rate to send or whether we can further reduce the frame rate. This paper answers these questions for two commonly used object tracking algorithms (frame-differencing-based blob tracking and CAMSHIFT tracking). The paper provides (i) an analytical framework to determine the critical frame rate to send a video for these algorithms without them losing the tracked object, given additional knowledge about the object and key design elements of the algorithms, and (ii) answers the questions of how we can modify the object tracking to further reduce the critical frame rate. Our results show that we can reduce the 30 fps rate by up to 7 times for blob tracking in the scenario of a single car moving across the camera view, and by up to 13 times for CAMSHIFT tracking in the scenario of a face moving in different directions.KeywordsAverage ErrorFrame RateTracking AlgorithmObject TrackingCurrent FrameThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.