Abstract
Sensitivity analysis is a valuable task for assessing the effects of biological variability on cellular behavior. Available techniques require knowledge of nominal parameter values, which cannot be determined accurately due to experimental uncertainty typical to problems of systems biology. As a consequence, the practical use of existing sensitivity analysis techniques may be seriously hampered by the effects of unpredictable experimental variability. To address this problem, we propose here a probabilistic approach to sensitivity analysis of biochemical reaction systems that explicitly models experimental variability and effectively reduces the impact of this type of uncertainty on the results. The proposed approach employs a recently introduced variance-based method to sensitivity analysis of biochemical reaction systems [Zhang et al., J. Chem. Phys. 134, 094101 (2009)] and leads to a technique that can be effectively used to accommodate appreciable levels of experimental variability. We discuss three numerical techniques for evaluating the sensitivity indices associated with the new method, which include Monte Carlo estimation, derivative approximation, and dimensionality reduction based on orthonormal Hermite approximation. By employing a computational model of the epidermal growth factor receptor signaling pathway, we demonstrate that the proposed technique can greatly reduce the effect of experimental variability on variance-based sensitivity analysis results. We expect that, in cases of appreciable experimental variability, the new method can lead to substantial improvements over existing sensitivity analysis techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.