Abstract

The high energy consumption of current processors causes several problems, including a limited clock frequency, short battery lifetime, and reduced device reliability. It is therefore important to reduce the energy consumption of the processor. Among resources in a processor, the issue queue (IQ) is a large consumer of energy, much of which is consumed by the wakeup logic. Within the wakeup logic, the tag comparison that checks source operand readiness consumes a significant amount of energy. This paper proposes an energy reduction scheme for tag comparison, called double-stage tag comparison. This scheme first compares the lower bits of the tag and then, only if these match, compares the higher bits. Because the energy consumption of tag comparison is roughly proportional to the total number of bits compared, energy is saved by reducing this number. However, this sequential comparison increases the delay of the IQ, thereby increasing the clock cycle time. Although this can be avoided by allocating an extra cycle to the issue operation, this in turn degrades the IPC. To avoid IPC degradation, we reconfigure a small number of entries in the IQ, where several oldest instructions that are likely to have an adverse effect on performance reside, to a single stage for tag comparison. Our evaluation results for SPEC2017 benchmark programs show that the double-stage tag comparison achieves on average a 21% reduction in the energy consumed by the wakeup logic (15% when including the overhead) with only 3.0% performance degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.