Abstract
AbstractLet K denote a compact real symmetric subset of ℂ and let Aℝ(K) denote the real Banach algebra of all real symmetric continuous functions on K that are analytic in the interior K◦ of K, endowed with the supremum norm. We characterize all unimodular pairs ( f , g) in Aℝ(K)2 which are reducible. In addition, for an arbitrary compact K in ℂ, we give a new proof (not relying on Banach algebra theory or elementary stable rank techniques) of the fact that the Bass stable rank of A(K) is 1. Finally, we also characterize all compact real symmetric sets K such that Aℝ(K), respectively Cℝ(K), has Bass stable rank 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.