Abstract

In this study, a reduced-order nonlinear dynamic model for shaft-disk-blade unit is developed. The multibody dynamic approach with the small deformation theory for both blade-bending and shaft-torsional deformations is adopted. The equations of motion are developed using Lagrange’s equation in conjunction with the assumed modes method (AMM) for approximating the blade transverse deflection. The model showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, modal coupling, stiffening, softening, and parametric excitations. The model is suitable for extensive parametric studies for predesign stage purposes as well as for diagnostics of rotor malfunctions, when blade and shaft torsional vibration interaction is suspected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.