Abstract

The solution-phase ligand-exchange strategy offers a simple pathway to prepare PbS quantum dots (QDs) and their corresponding solar cells. However, the production of high-quality PbS QDs with reduced surface trap state density for efficient PbS QD solar cells (QDSCs) still faces challenges. As the hydroxyl group (-OH) has been demonstrated to be the primary source of the surface trap states on PbS QDs in the general oleic acid method, here, we present an effective and facile strategy for reducing the surface -OH content of PbS QDs by using acetonitrile (ACN) as precipitant to wash the surface of QDs, which significantly decreases the trap state density and enables the preparation of superior PbS QDs. The resulting solar cell with an ITO/SnO2/n-PbS/p-PbS/Au structure obtained an improved photoelectric conversion efficiency (PCE) from 8.53 to 10.49% with an enhanced air storage stability, realizing a high PCE for SnO2-based PbS QDSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.