Abstract

In this research paper, a vertical tunnel field-effect transistor (TFET) structure containing a live metal strip and a material with low dielectric constant is designed, and its performance metrics are analyzed in detail. Low-k SiO2 is incorporated in the channel-drain region. A live molybdenum metal strip with low work function is placed in a high-k HfO2 layer in the source-channel region. The device is examined by the parameters I off, subthreshold swing, threshold voltage, and I on/I off ratio. The introduction of a live metal strip in the dielectric layer closer to the source-channel interface results in a minimum subthreshold slope and a good I on/I off ratio. The low-k material at the drain reduces the gate-to-drain capacitance. Both the SiO2 layer and the live metal strip show excellent leakage current reduction to 1.4 × 10-17 A/μm. The design provides a subthreshold swing of 5 mV/decade, which is an excellent improvement in TFETs, an on-current of 1.00 × 10-5 A/μm, an I on/I off ratio of 7.14 × 1011, and a threshold voltage of 0.28 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.