Abstract

ABSTRACTDue to its limited recycling or reuse, treatment and disposal of excess waste activated sludge has been a major challenge. As a preemptive method, therefore, uncoupling metabolism for reduced sludge production has been investigated recently. In this study, we operated a pilot-scale A2O-membrane bioreactor (MBR) system incorporating an anaerobic sludge holding tank (SHT) in a sludge recycling line to induce uncoupling metabolism, and investigated sludge production and treatment efficiency. After operation for ≥1 year, the Yobs value was estimated to be 0.041 g mixed liquor suspended solid (MLSS)/g chemical oxygen demand with 198.7 days of solids retention time (SRT). This Yobs value was markedly lower than those reported previously. Since MBR can be operated with a relatively high MLSS and prolonged SRT, the greatest reduction was achieved by combination with uncoupling metabolism. Phosphate fractionation experiments of the MLSS from the pilot MBR suggested the total phosphate content of microorganisms was 47.0 mg P/g mixed liquor volatile suspended solid; 83% higher than that of the activated sludge process and 49% higher than that of the conventional A2O process. Of the increased phosphate contents, that of the acid-insoluble polyphosphate (AISP) fraction was greatest, suggesting that growth inhibition by uncoupling metabolism stimulates AISP synthesis, which can be utilized under growth-limiting conditions.Abbreviations: AISP: acid-insoluble polyphosphate; ASP: acid-soluble polyphosphate; BNR: biological nutrients removal; EPS: extracellular polymeric substance; LMH: L/m2 h; MBR: membrane bioreactor; OST: oxic-settling-anaerobic; PAO: phosphate accumulation organism; PCA: perchloric acid; SBR: sequencing batch reactor; SHT: sludge holding tank; SRT: solids retention time; TN: total nitrogen; TP: total phosphate; WAS: waste activated sludge

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.