Abstract

This investigation deals with factors affecting the production of glycerol in Saccharomyces cerevisiae. In particular, the impact of reduced pyruvate-decarboxylase (PDC) and increased NAD-dependent glycerol-3-phosphate dehydrogenase (GPD) levels was studied. The glycerol yield was 4.7 times (a pdc mutant exhibiting 19% of normal PDC activity) and 6.5 times (a strain exhibiting 20-fold increased GPD activity resulting from overexpression of GPD1 gene) that of the wild type. In the strain carrying both enzyme activity alterations, the glycerol yield was 8.1 times higher than that of the wild type. In all cases, the substantial increase in glycerol yield was associated with a reduction in ethanol yield and a higher by-product formation. The rate of glycerol formation in the pdc mutant was, due to a slower rate of glucose catabolism, only twice that of the wild type, and was increased by GPD1 overexpression to three times that of the wild-type level. Overexpression of GPD1 in the wild-type background, however, led to a six- to seven-fold increase in the rate of glycerol formation. The experimental work clearly demonstrates the rate-limiting role of GPD in glycerol formation in S. cerevisiae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.