Abstract

A common strategy for the dimensionality reduction of nonlinear partial differential equations (PDEs) relies on the use of the proper orthogonal decomposition (POD) to identify a reduced subspace and the Galerkin projection for evolving dynamics in this reduced space. However, advection-dominated PDEs are represented poorly by this methodology since the process of truncation discards important interactions between higher-order modes during time evolution. In this study, we demonstrate that encoding using convolutional autoencoders (CAEs) followed by a reduced-space time evolution by recurrent neural networks overcomes this limitation effectively. We demonstrate that a truncated system of only two latent space dimensions can reproduce a sharp advecting shock profile for the viscous Burgers equation with very low viscosities, and a six-dimensional latent space can recreate the evolution of the inviscid shallow water equations. Additionally, the proposed framework is extended to a parametric reduced-order model by directly embedding parametric information into the latent space to detect trends in system evolution. Our results show that these advection-dominated systems are more amenable to low-dimensional encoding and time evolution by a CAE and recurrent neural network combination than the POD-Galerkin technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.