Abstract

Sucrose-based artificial cerebrospinal fluid (aCSF) is sometimes used to prepare brain slices for in vitro electrophysiological experiments. This study compared the effect of preparing brain slices using chilled sucrose-based aCSF versus the conventional method using chilled aCSF on hippocampal synaptic plasticity. Brain slices from each treatment group were transferred to normal aCSF before electrophysiological recordings were made. The stimulus–response relationship of field excitatory postsynaptic potentials (fEPSPs) in the CA1 region was indistinguishable between the two treatment groups. However, the amount of LTP induced by either a θ-burst (four stimuli at 100 Hz repeated ten times at 200 ms intervals) or tetanic stimulation (100 Hz for 1 s) was significantly reduced in slices that had been prepared using sucrose-based aCSF. This was associated with reduced facilitation of the fEPSPs during the high frequency stimulus, reduced post-tetanic potentiation and short-term potentiation. In sucrose-cut slices the fEPSPs were slightly shorter in duration (29%, P<0.01), and during paired-pulse stimulation the broadening of the second fEPSP was enhanced. The LTP deficit in sucrose-cut slices was reversed by blocking GABA A receptor function with picrotoxin. These data suggest that the use of sucrose based aCSF better preserves GABA-mediated synaptic transmission, which limits the induction of LTP in hippocampal brain slices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.