Abstract

Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (VOC ). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3 NH3 PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.