Abstract

Beijing has implemented systematic air pollution control legislation to reduce particulate emissions and improve air quality during the 2008 Summer Olympics, but whether the toxicity of fine fraction of particles (PM2.5) would be changed remains unclear. In present study we compared in vitro biological responses of PM2.5 collected before and during the Olympics and tried to reveal possible correlations between its chemical components and toxicological mechanism(s). We measured cytotoxicity, cytokines/chemokines, and related gene expressions in murine alveolar macrophages, MH-S, after treated with 20PM2.5 samples. Significant, dose-dependent effects on cell viability, cytokine/chemokine release and mRNA expressions were observed. The cytotoxicity caused at equal mass concentration of PM2.5 was notably reduced (p<0.05) by control measures, and significant association was found for viability and elemental zinc in PM2.5. Endotoxin content in PM2.5 correlated with all of the eight detected cytokines/chemokines; elemental and organic carbon correlated with four; arsenic and chromium correlated with six and three, respectively; iron and barium showed associations with two; nickel, magnesium, potassium, and calcium showed associations with one. PM2.5 toxicity in Beijing was substantially dependent on its chemical components, and lowering the levels of specific components in PM2.5 during the 2008 Olympics resulted in reduced biological responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.