Abstract

This paper proposes a novel Reduced Gaussian Process Regression (RGPR)-based Random Forest (RF) technique (RGPR-RF) for fault detection and diagnosis (FDD) of wind energy conversion (WEC) systems. The statistical features, including the mean vector MRGPR and the variance matrix CRGPR, are computed using the RGPR model then fed to the RF algorithm for fault classification purposes. The proposed RGPR model extracts the most relevant information from the WEC system data while reducing the computation burden compared to the classical GPR model. The complexity reduction is ensured by the selection of the most effective samples through the dimensionality reduction (DR) metrics including Hierarchical K-means (HKmeans) clustering and Euclidean distance (ED). The proposed RGPRHKmeans-RF and RGPRED-RF techniques boost the classification speed and accuracy using a reduced number of features where only the most relevant and sensitive characteristics are kept in case of redundancy. Three kinds of WEC system faults are considered in order to illustrate the effectiveness and robustness of the developed techniques. The obtained results show that the proposed RGPR-RF technique is characterized by a low computation time and high diagnosis accuracy (an average accuracy of 99.9%) compared to the conventional RF classifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.