Abstract
We report a comparative experimental study of the reversal of the large-scale circulation in turbulent Rayleigh–Benard convection in a quasi-two-dimensional corner-less cell where the corner vortices are absent and in a quasi-two-dimensional normal cell where the corner vortices are present. It is found that in the corner-less cell the reversal frequency exhibits a slow decrease followed by a fast decrease with increasing Rayleigh number , separated by a transitional ( ). The transition is similar to that in the normal cell, and is almost the same for both cells. Despite the similarities, the reversal frequency is greatly reduced in the corner-less cell. The reduction of the reversal frequency is more significant, in terms of both the amplitude and the scaling exponent, in the high- regime. In addition, we classified the reversals into main-vortex-led and corner-vortex-led, and found that both types exist in the normal cell while only the former exists in the corner-less cell. The frequency of main-vortex-led reversal in the normal cell is found to be in excellent agreement with the frequency of reversals in the corner-less cell. Our results reveal for the first time the quantitative role of the corner vortices in the occurrence of the reversals of the large-scale circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.