Abstract

A model, called the linear transform network (LTN), is proposed to analyze the compression and estimation of correlated signals transmitted over directed acyclic graphs (DAGs). An LTN is a DAG network with multiple source and receiver nodes. Source nodes transmit subspace projections of random correlated signals by applying reduced-dimension linear transforms. The subspace projections are linearly processed by multiple relays and routed to intended receivers. Each receiver applies a linear estimator to approximate a subset of the sources with minimum mean squared error (MSE) distortion. The model is extended to include noisy networks with power constraints on transmitters. A key task is to compute all local compression matrices and linear estimators in the network to minimize end-to-end distortion. The non-convex problem is solved iteratively within an optimization framework using constrained quadratic programs (QPs). The proposed algorithm recovers as special cases the regular and distributed Karhunen-Loeve transforms (KLTs). Cut-set lower bounds on the distortion region of multi-source, multi-receiver networks are given for linear coding based on convex relaxations. Cut-set lower bounds are also given for any coding strategy based on information theory. The distortion region and compression-estimation tradeoffs are illustrated for different communication demands (e.g. multiple unicast), and graph structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.