Abstract

ABSTRACT We examine the evolution of intragroup gas rest-frame X-ray scaling relations for group-sized haloes (M500 = 1012.3–1015 M⊙) in the Simba galaxy formation simulation. X-ray luminosity LX versus M500 shows increasing deviation from self-similarity from z = 3 → 0, with M500 < 1013.5 M⊙ haloes exhibiting a large reduction in LX and slight increase in X-ray luminosity-weighted temperature TX. These shifts are driven by a strong drop in fgas with time for these haloes, and coincides with the onset of Simba’s black hole (BH) jet feedback, occurring when MBH > 107.5 M⊙ and Eddington ratio <0.2, in group haloes at z ∼ 1.5. The connection with BH feedback is corroborated by fBH ≡ MBH/M500 in M500 < 1013.5 M⊙ haloes being strongly anticorrelated with LX and fgas at $z\lesssim 1.5$. This is further reflected in the scatter of LX − TX: haloes with small fBH lie near self-similarity, while those with the highest fBH lie furthest below. Turning off jet feedback results in mostly self-similar behaviour down to z = 0. For the X-ray weighted metallicity ZX, stellar feedback impacts the enrichment of halo gas. Finally, halo profiles show that jet feedback flattens the electron density and entropy profiles, and introduces a core in X-ray surface brightness, particularly at M500 < 1013.5 M⊙. This argues that in Simba, intragroup X-ray evolution is largely driven by jet feedback removing hot gas from the cores of massive groups, and expelling gas altogether in less massive groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.