Abstract

Defining the redox activity of different surface facets of ceria nanocrystals is important for designing an efficient catalyst. Especially in liquid-phase reactions, where surface interactions are complicated, direct investigation in a native environment is required to understand the facet-dependent redox properties. Using liquid cell TEM, we herein observed the etching of ceria-based nanocrystals under the control of redox-governing factors. Direct nanoscale observation reveals facet-dependent etching kinetics, thus identifying the specific facet ({100} for reduction and {111} for oxidation) that governs the overall etching under different chemical conditions. Under each redox condition, the contribution of the predominant facet increases as the etching reactivity increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.