Abstract

Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62μM, when prepared according to the manufacturer’s instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138nM to 40nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.