Abstract

Respiratory complex I, NADH:ubiquinone oxidoreductase, is a large and complex integral membrane enzyme found in respiring bacteria and mitochondria. It is responsible in part for generating the proton gradient necessary for ATP production. Complex I serves as both a proton pump and an entry point for electrons into the respiratory chain. Although complex I is one of the most important of the respiratory complexes, it is also one of the least understood, with detailed structural information only recently available. In this study, full-finite-difference Poisson-Boltzmann calculations of the protonation state of respiratory complex I in various redox states are presented. Since complex I couples the oxidation and reduction of the NADH/ubiquinone redox couple to proton translocation, the interaction of the protonation and redox states of the enzyme are of the utmost significance. Various aspects of complex I function are presented, including the redox-Bohr effect, intercofactor interactions, and the effects of both the protein dielectric and inclusion of the membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.