Abstract

The rhythm of cardiac beats is generated by pacemaker cells differing from other cardiomyocytes by the presence of slow diastolic depolarization. Consistently activated transmembrane ionic currents provide cyclic excitation of pacemakers, forming the original "membrane clocks". A new concept has been forwarded in the last decade according to which periodic fluctuations in myoplasmic Ca2+ level ("calcium clocks") not only influence a course of "membrane clocks", but they also can serve as independent generators of the rhythm. Transport of Ca2+ in cells is under constant influence of active forms of oxygen and nitrogen. Both superoxide and NO in moderate doses facilitate Ca2+ output from the sarcoplasmic reticulum, accelerating the course of "calcium clocks", but in higher doses they have opposite effect that may be neutralized mainly by reduced glutathione. The control of cardiac rhythm by active forms of oxygen and nitrogen represents a feedback mechanism by which mitochondria and NO-synthases support Ca2+ homeostasis in cells that can be temporarily disturbed under mechanical loads or hypoxia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.