Abstract

Monoclonal antibodies and human autoimmune sera specific for the nuclear mitotic apparatus protein (NuMA protein) were applied to study the structure of this protein and its intracellular distribution. The NuMA protein was purified using immuno-affinity columns. Studies on this large (250 kD) nuclear protein indicated that it is a highly asymmetric phosphoprotein. It is present in all mammalian cells examined and in those of some non-mammals. Immunofluorescence studies on fixed cells demonstrated that its intracellular distribution is essentially the same in all species at all stages of the cell cycle. Immunoblot (western blot) analysis showed that the size of the NuMA protein varies slightly in different species. At the onset of mitosis the NuMA protein redistributes from the nucleus to two centrosomal structures that later will become part of the mitotic spindle pole. This occurs at the time of nuclear breakdown and eventually leads to an accumulation of the NuMA protein at the polar region of the mitotic spindle. After anaphase the protein redistributes from the spindle polar region into the reforming nucleus and concentrates initially at the site where nuclear lamins and perichomatin have been reported to assemble. Living cells microinjected with fluorescent anti-NuMA antibodies were studied to examine parameters that effect the redistribution of the NuMA protein in vivo. These experiments indicate that microtubule assembly is essential for the NuMA protein to accumulate in the polar region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.