Abstract

During sporulation, Bacillus thuringiensis produces insecticidal crystal inclusions (Cry proteins) encoded by cry genes. In fed-batch cultures (FBCs), spores and Cry protein yields are usually low, so we therefore studied the pattern of metabolic changes occurring in batch cultures and FBCs of a B. thuringiensis strain having a cry1Aa promoter-lacZ fusion, and their effect on sporulation and cry1A gene expression. In FBCs, there was a redirection of bacterial metabolism and a reduction in the specific growth rate during feeding, even when the nutrient concentration was higher than at the beginning of batch culture. These physiological changes suggest that the transition state is set up during feeding and this set-up seems to have a negative effect on both sporulation and cry1Aa expression. When the filtrate of a culture in the transition state was added to a batch culture early in the first exponential growth phase, it delayed sporulation and cry1Aa expression, thus suggesting that a soluble cellular factor that blocked sporulation might be excreted during the transition state. Citrate production usually started during the transition state but, when a medium rich in free amino acids was fed, citrate was produced from the first growth phase and sporulation was nearly blocked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.