Abstract

It is known that the kinetics of redox reactions occurring on the surfaces of passive metals depend upon the properties of the passive film, ostensibly due to quantum mechanical tunnelling (QMT) of electrons and holes between the metal and the redox couple at the barrier layer/solution (bl/s) interface. In this paper, the tunnelling probability is used to inter-convert the exchange current densities for the redox reactions occurring at the bl/s interface and on the hypothetical bare metal surface. We review our previous work on combining QMT theory with the point defect model (PDM), which provides an analytical expression for the bl thickness as a function of voltage. By combining QMT theory and the PDM, we derive a modified form of the generalized Butler-Volmer equation that requires as input only the kinetic parameters for the redox reaction on the hypothetical bare surface and parameters contained in the PDM. The application of the theory is illustrated with reference to the corrosion of carbon steel in concrete pore solution, to calculating the corrosion potential of, and crack growth rate in, sensitized type 304 SS in boiling water reactor (BWR) coolant circuits, and the use of hydrogen oxidation on platinum to determine the thickness of the bl as a function of voltage and temperature. This illustrates a new, powerful technique for probing the formation of passive films on metal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.