Abstract
El proceso de automatización del Servicio Sismológico Nacional de Cuba, se ha convertido en una tarea de primer orden para el país. Lo anterior se justifica, con el objetivo de lograr ganar en efectividad y eficiencia en la detección y localización de sismos en el territorio nacional, de ahí la importancia de esta investigación. El objetivo fue el diseño e implementación de una red neuronal artificial, para determinar de manera automática el azimut de un terremoto al realizar su localización con una estación sismológica de tres componentes. Se consideró para el desarrollo de la investigación un enfoque cuantitativo. Las señales se tomaron de la estación sismológica, Río Carpintero. La investigación se abordó como un problema de regresión múltiple y se propuso un modelo de Red Convolucional 1D. Se empleó Python como lenguaje de programación. Para la adquisición y pre procesamiento de las señales sísmicas se utilizó la herramienta de código abierto basado en Python: Obspy. El modelo de red neuronal se implementó utilizando los marcos de desarrollo para aprendizaje de máquinas Keras y Tensor flow. Se utilizaron en total 49233 señales de terremotos, de ellas 39386 para el entrenamiento y 9847 para la validación. La red diseñada e implementada fue capaz de determinar automáticamente el azimut de un terremoto con una efectividad del 90 %, evidenciado en los valores del coeficiente de determinación R2. Las pruebas y validaciones realizadas indicaron la posibilidad de extender la metodología y el uso de la herramienta computacional a otras estaciones sismológicas de Cuba
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have