Abstract

The non-productive hole-current from blue, green and red phosphorescent OLEDs was reduced by employing silver nanoparticles embedded glass:Ni-Ag-codoped ZnO (SNSZO) anode and enhanced the efficiencies. The blue device using SNSZO: Ir(fdbdi)3 exhibit maximum luminance (L) of 42683 cd/m2, current efficiency (ηc) of 43.6 cd/A and power efficiency (ηp) of 45.3 lm W-1 with external quantum efficiency (ηex) of 20.2 % than ITO: Ir(fdbdi)3 based device [L- 35126 cd/m2; ηc - 38.4 cd/A; ηp - 37.3 lm w-1; ηex -15.1 %]. The green device with SNSZO: Ir(mnmpdi)2(acac) show intensified emission at 520 nm and exhibit higher efficiency; L - 47238 cd/m2, ηc -50.9 cd/A, ηp - 49.3 lm w-1 and ηex - 18.9 % [ITO: Ir(mnmpdi)2(acac): L- 39326 cd/m2; ηc-46.0 cd/A; ηp -39.3 lm w-1; ηex -13.8 %]. The red device (620 nm) with SNSZO: Ir(mnpbi)2(acac) show L - 9058 cd/m2, ηc - 8.3 cd/A, ηp -6.4 lm w-1 and ηex - 12.2 % [ITO: Ir(mnpbi)2(acac): L- 7632 cd/m2; ηc -4.1 cd/A; ηp -6.40 lm w-1; ηex -6.0 %]. The proposed OLEDs with SNSZO anode shows excellent efficiencies than ITO and providing alternate for high-performance OLEDs and other optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.