Proceedings of the National Academy of Sciences | VOL. 119
Read

Recycling spent LiNi 1-x-y Mn x Co y O 2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries

Publication Date May 9, 2022

Abstract

Significance In recent years, lithium-ion batteries (LIBs) have been widely applied in electric vehicles as energy storage devices. However, it is a great challenge to deal with the large number of spent LIBs. In this work, we employ a rapid thermal radiation method to convert the spent LIBs into highly efficient bifunctional NiMnCo-activated carbon (NiMnCo-AC) catalysts for zinc-air batteries (ZABs). The obtained NiMnCo-AC catalyst shows excellent electrochemical performance in ZABs due to the unique core-shell structure, with face-centered cubic Ni in the core and spinel NiMnCoO 4 in the shell. This work provides an economical and environment-friendly approach to recycling the spent LIBs and converting them into novel energy storage devices.

Concepts

Catalysts For Zinc-air Batteries Energy Storage Devices Zinc-air Batteries Electric Vehicles Lithium-ion Batteries Rapid Radiation Carbon Catalysts Efficient Carbon Economical Approach Thermal Method

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.