Abstract

To explore the recursive characteristics of a running-in attractor, recurrence plot (RP) and recursive parameters are used to investigate the dynamic features of the structure. The running-in attractor is constructed based on friction noise signals generated from the ring-on-disk wear experiments. The RPs of the running-in attractor are then reproduced in a two-dimensional space. Recursive parameters, recurrence rate (RR), entropy (ENTR), and trend of recurrence (RT) are calculated. Results show that the RP evolves from a disrupted pattern to a homogeneous pattern and then returns to a disrupted pattern in the entire wear process, corresponding to the “formation–stabilization–disappearance” stage of the running-in attractor. The RR and ENTR of the running-in attractor sharply increase at first, remain steady, and then sharply decrease. Moreover, the inclination of RT in the normal wear process is smaller than those in the other two processes. This observation reveals that the running-in attractor exhibits high stability and complexity. This finding may contribute to the running-in state identification, process prediction, and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.