Abstract

Realizability structures play a major role in the metamathematics of intuitionistic systems and they are a basic tool in the extraction of the computational content of constructive proofs. Besides their rich categorical structure and effectiveness properties provide a privileged mathematical setting for the semantics of data types of programming languages. In this paper we emphasize the modelling of recursive definitions of programs and types. A realizability model for a language including Girard's system F and an operator of recursion on types is given and some of its local properties are studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.