Abstract
The mechanical strength of weld-bead is dependent on its geometric parameters like bead height, width and penetration, which depend on input process parameters, namely welding speed, arc voltage, wire feed rate, gas flow rate, nozzle-to-plate distance, torch angle etc. Recurrent neural networks were used for conducting both forward and reverse mappings using three approaches. The first approach dealt with the training of Elman network through updating its connecting weights using a back-propagation algorithm. In second approach, a real-coded genetic algorithm was used along with the back-propagation algorithm to tune the network. The third approach utilised a real-coded genetic algorithm only to optimise the network. In forward mapping, third approach was found to outperform the others, but in reverse mapping, first and second approaches were seen to perform better than the third one. The performances of these approaches were found to be data dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Analysis Techniques and Strategies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.