Abstract

In cardiac myocytes, clusters of type-2 ryanodine receptors (RyR2s) release Ca2+ from the sarcoplasmic reticulum (SR) via a positive feedback mechanism in which fluxed Ca2+ activates nearby RyRs. Although the general principles of this are understood, less is known about how single-RyR gating properties define the RyR group dynamics in an array of many channels. Here, we examine this using simulations with three models of RyR gating that have identical open probabilities: the commonly used two-state Markov gating model, one that utilizes multiple exponentials to fit single-channel open time (OT) and closed time (CT) distributions, and an extension of this multiexponential model that also includes experimentally measured correlations between single-channel OTs and CTs. The simulations of RyR clusters that utilize the multiexponential gating model produce infrequent Ca2+ release events with relatively few open RyRs. Ca2+ release events become even smaller when OT/CT correlations are included. This occurs because the correlations produce a small but consistent bias against recruiting more RyRs to open during the middle of a Ca2+ release event, between the initiation and termination phases (which are unaltered compared to the uncorrelated simulations). In comparison, the two-state model produces frequent, large, and long Ca2+ release events because it had a recruitment bias in favor of opening more RyRs. This difference stems from the two-state model’s single-RyR OT and CT distributions being qualitatively different from the experimental ones. Thus, the details of single-RyR gating can profoundly affect SR Ca2+ release even if open probability and mean OTs and CTs are identical. We also show that Ca2+ release events can terminate spontaneously without any reduction in SR [Ca2+], luminal regulation, Ca2+-dependent inactivation, or physical coupling between RyRs when Ca2+ flux is below a threshold value. This supports and extends the pernicious attrition/induction decay hypothesis that SR Ca2+ release events terminate below a threshold Ca2+ flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.