Abstract

With the increased uncertainty in the power system operation due to growing penetration of highly intermittent energy sources such as wind power, the need for the impact assessment of the renewable penetration on system operating risk and the quantification of benefits of using energy storage technologies is more than ever. A recovery-risk-analysis-based analytical framework for operating risk assessment of wind-integrated bulk power system following a major contingency disturbance is presented in this paper. Two new indices that quantify the recovery risk profile of the bulk power system and its load delivery points following major disturbances are introduced in this paper. The indices obtained from the proposed framework quantify the impact of increasing wind penetration on the system operating risk and the reliability benefits of using fast-responding energy storage system such as flywheel energy storage systems. The proposed methodology is illustrated through several case studies carried out in a test system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.