Abstract

Large amounts of iron– and steelmaking slag and greenhouse gas are annually produced by the steel industry worldwide. Using Ca/Mg in the slag to capture and store the CO2 via mineral carbonation is a promising approach to the reduction of waste emissions. Since iron– and steelmaking slags are a mixture of numerous types of minerals, understanding the dissolution behavior of various phases in solution system is of critical importance for Ca/Mg recovery. In this work, seven Ca/Mg–bearing phases and four typical solutions were prepared and studied. Theoretical results indicated that the order of mineral solubility in aqueous solution is as follows: (CaO and Ca2SiO4) > (Ca3MgSi2O8, Ca2MgSi2O7, and MgO) > Ca2Al2SiO7 > MgCr2O4. A batch of leaching tests was conducted at room temperature, and the recovery yield of Ca/Mg was investigated. It was found that minerals show different dissolution behavior in various systems, and the metallic oxide phases exhibited a relatively higher solubility than silicate phases. The solubility of minerals in various systems was illustrated by radar plots. Moreover, leaching tests for silicate briquettes were performed to investigate the transformation mechanism. On the basis of the results, it was proposed that a silicic acid layer generated on the surface of briquettes in the leaching process, and could transform into porous silica phase via dehydration process. The formed Si–rich layer obstructed the dissolution of inner mineral leading to a low recovery efficiency of Ca/Mg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.