Abstract

Recovery from the heat-shock response was tested in heat-tolerant (selected bentgrass [SB]) and nontolerant (nonselected bentgrass [NSB]) variants of creeping bentgrass (Agrostis palustris Huds.) SB increased incorporation of radioactive amino acids into protein 2 h earlier than NSB when leaf blades were incubated at the recovery temperature following heat shock. Electrophoresis indicated that heat-shock protein (HSP) synthesis decreased and normal protein synthesis increased at 4 h in SB and at 6 to 8 h in NSB. Increased synthesis of normal proteins was not due to increased abundance of normal mRNAs, which were equivalent in SB and NSB at 4 h. But at 4 h, more of the normal mRNA population was associated with polysomes in SB than in NSB. Synthesis of HSP70 and HSP18 decreased earlier in SB than in NSB. The decreased synthesis of these HSPs appeared to be correlated with decreased mRNA abundance. But at 4 h, some of the HSP18 mRNA may have been associated with heat-shock granules in SB. Synthesis of HSP25 continued through the 8-h recovery in both variants. Although the abundance of HSP25 was equivalent in SB and NSB during heat shock and recovery, more HSP25 mRNA was associated with polysomes in SB than in NSB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.