Abstract

Raw depth images captured by consumer depth cameras suffer from noisy and missing values. Despite the success of CNN-based image processing on color image restoration, similar approaches for depth enhancement have not been much addressed yet because of the lack of raw-clean pairwise dataset. In this paper, we propose a pairwise depth image dataset generation method using dense 3D surface reconstruction with a filtering method to remove low quality pairs. We also present a multi-scale Laplacian pyramid based neural network and structure preserving loss functions to progressively reduce the noise and holes from coarse to fine scales. Experimental results show that our network trained with our pairwise dataset can enhance the input depth images to become comparable with 3D reconstructions obtained from depth streams, and can accelerate the convergence of dense 3D reconstruction results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.