Abstract

A multi-wavelength inversion method is extended to reconstruct the time-averaged temperature distribution in non-axisymmetric turbulent unconfined sooting flame by the multi-wavelength measured data of low time-resolution outgoing emission and transmission radiation intensities. Gaussian, β and uniform distribution probability density functions (PDF) are used to simulate the turbulent fluctuation of temperature, respectively. The reconstruction of time-averaged temperature consists of three steps. First, the time-averaged spectral absorption coefficient is retrieved from the time-averaged transmissivity data by an algebraic reconstruction technique. Then, the time-averaged blackbody spectral radiation intensity is estimated from the outgoing spectral emission radiation intensities. Finally, the time-averaged temperature is approximately reconstructed from the multi-wavelength time-averaged spectral emission radiation data by the least-squares method. Noisy input data have been used to test the performance of the proposed inversion method. The results show that the time-averaged temperature distribution can be estimated with good accuracy, even with noisy input data. The accuracy of the estimation decreases with the increase of turbulent fluctuation intensity of temperature and the effects of assumed PDF on the reconstruction of temperature are small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.