Abstract
AbstractComprehensive reconstruction of changes in eukaryotic communities in the recent past is useful for determining the response of the local ecosystems to global changes during the Anthropocene. We used DNA barcoding technology to reconstruct the marine eukaryotic communities of Beppu Bay, the Seto Inland Sea, Japan, over the past 50 years based on a short sediment core. Highly vulnerable DNA fragments were preserved in the sediments, possibly due to seasonally euxinic conditions. Analysis of the 18S rRNA V9 gene region indicated the temporal variability in eukaryotic communities, which consisted mainly of dinoflagellates and diatoms, in response to changes in the nutrient regime. The dominant species in the dinoflagellate genus Alexandrium changed as the water temperature increased. In addition, enhanced contributions by terrestrial plants and mosses were detected in flood sediments. Our results suggest that DNA fragments can be used as a proxy for the paleoenvironmental and paleoecological conditions in Beppu Bay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.