Abstract

In seismic data processing, we often need to interpolate/extrapolate missing spatial locations in a domain of interest. The reconstruction problem can be posed as an inverse problem where from inadequate and incomplete data one attempts to recover the complete band-limited seismic wavefield. However, the problem is often ill posed due to factors such as inaccurate knowledge of bandwidth and noise. In this case, regularization can be used to help to obtain a unique and stable solution. In this paper, we formulate band-limited data reconstruction as a minimum norm least squares type problem where an adaptive DFT-weighted norm regularization term is used to constrain solutions. In particular, the regularization term is updated iteratively through using the modified periodogram of the estimated data. The technique allows for adaptive incorporation of prior knowledge of the data such as the spectrum support and the shape of the spectrum. The adaptive regularization can be accelerated using FFTs and an iterative solver like preconditioned conjugate gradient algorithm. Examples on synthetic and real seismic data illustrate improvement of the new method over damped least squares estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.