Abstract

Abstract Petrological investigations of active volcanoes are often supported by mass balance, thermodynamic calculations and/or experiments performed at key conditions. Conversely, the compositions of mineral phases found in natural products are generally used as input data for predictive models calibrated to derive the intensive variables of the magmatic system. In order to evaluate the extent to which mineral chemistry records crystallization conditions, we have compared the compositions of olivine, clinopyroxene, plagioclase and titanomagnetite in 2001–2012 trachybasaltic lavas at Mt. Etna with those obtained through thermodynamic simulations and experiments conducted under anhydrous, water-undersaturated and water-saturated conditions. This systematic comparison allows us to track recent differentiation processes beneath Mt. Etna, as well as the P–T–fO2–H2O variables controlling the solidification path of magma. Two compositionally distinct populations of olivine and clinopyroxene phenocrysts are found in these lavas: Mg-rich and Mg-poor minerals formed at 600–1100 MPa and 1100–1250 °C, and 0.1–500 MPa and 1050–1175 °C, respectively. The oxygen fugacity varies by 1–2 log units suggesting water exsolution during magma ascent in the conduit and magma emplacement near the surface. The nucleation and growth of normally zoned plagioclases occur at P

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.