Abstract

We propose a method of reconstructing 3D machine-made shapes from bitmap sketches by separating an input image into individual patches and jointly optimizing their geometry. We rely on two main observations: (1) human observers interpret sketches of man-made shapes as a collection of simple geometric primitives, and (2) sketch strokes often indicate occlusion contours or sharp ridges between those primitives. Using these main observations we design a system that takes a single bitmap image of a shape, estimates image depth and segmentation into primitives with neural networks, then fits primitives to the predicted depth while determining occlusion contours and aligning intersections with the input drawing via optimization. Unlike previous work, our approach does not require additional input, annotation, or templates, and does not require retraining for a new category of man-made shapes. Our method produces triangular meshes that display sharp geometric features and are suitable for downstream applications, such as editing, rendering, and shading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.