Abstract

A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7) fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.