Abstract

There are two main artifacts in reconstructed images from in-beam positron emission tomography (PET). Unlike generic PET, in-beam PET uses the annihilation photons that occur during heavy ion therapy. Therefore, the geometry of in-beam PET is not a full ring, but a partial ring that has one or two openings around the rings in order for the hadrons to arrive at the tumor without prevention of detector blocks. This causes truncation in the projection data due to an absence of detector modules in the openings. The other is a ring artifact caused by the gaps between detector modules also found in generic PET. To sum up, in-beam PET has two kinds of gap: openings for hadrons, and gaps between the modules. We acquired three types of simulation results from a PET system: full-ring, C-ring and dual head. In this study, we aim to compensate for the artifacts that come from the two types of gap. In the case of truncation, we propose a method that uses prior knowledge of the location where annihilations occur, and we applied the discrete-cosine transform (DCT) gap-filling method proposed by Tuna et al. for inter-detector gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.