Abstract

In veterinary clinics, esophageal reconstruction is essential in many clinical situations. In this study, two autografts, the tunica vaginalis (TV) and the buccal mucosa (BM), were proposed to reconstruct a semi-circumferential cervical esophageal defect in dogs. This study aimed to verify whether these two grafts could successfully patch esophageal defects. Twelve male mongrel dogs were divided into two groups. Following cervical esophagoplasty, the defective area was patched with either a TV or a BM graft. Comprehensive clinical, serum biochemical, and histological analyses were performed to evaluate the two grafts. Throughout the study (120 days), the dogs survived the procedure well with minor complications. The lumen of the patched areas was covered with mucosa, with slight scar retraction. Compared with that of the natural esophagus, the average relative luminal diameter was not significantly decreased. Importantly, the measured cortisol and inflammatory marker levels returned to the preoperative levels after 14 days. Although histological examination revealed that both grafts repaired the esophageal defect with complete re-epithelialization, the BM graft showed a histological structure similar to that of the natural esophagus. Both grafts effectively repaired the esophageal defect with minor complications; therefore, both are recommended as promising low-cost clinical alternatives for cervical esophagoplasty in dogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.