Abstract
This paper has focused on unknown functions identification in nonlinear boundary conditions of an inverse problem of a time‐fractional reaction–diffusion–convection equation. This inverse problem is generally ill‐posed in the sense of stability, that is, the solution of problem does not depend continuously on the input data. Thus, a combination of the mollification regularization method with Gauss kernel and a finite difference marching scheme will be introduced to solve this problem. The generalized cross‐validation choice rule is applied to find a suitable regularization parameter. The stability and convergence of the numerical method are investigated. Finally, two numerical examples are provided to test the effectiveness and validity of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.