Abstract

An acoustic source identification technique with single layer pressure measurement is presented to reconstruct normal velocities of target sources in noisy environments. The theory for this reconstruction is developed from the inverse patch transfer functions method which is supposed to combine measurements of pressure and velocity on a surface surrounding the source. The rigid microphone array is called an acoustic mask, which is designed to obtain pressure on the Neumann boundary condition and realized by microphones flush mounted on the aluminum plate. The validity of the proposed method is demonstrated by giving the normal velocities of two baffled loudspeakers in a noisy environment in the simulation and experiment. Another experiment of a clamped steel plate is further presented to illustrate the ability of the acoustic mask to obtain the partial velocity field of interest without reconstruction of the whole source surface velocity. The accuracy of this technique is demonstrated by comparison with the accelerometer method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.