Abstract

Huntington's disease (HD), a devastating neurodegenerative disorder, strongly affects the corticostriatal network, but the contribution of pre- and postsynaptic neurons in the first phases of disease is unclear due to difficulties performing early subcellular investigations invivo. Here, we have developed an on-a-chip approach to reconstitute an HD corticostriatal network invitro, using microfluidic devices compatible with subcellular resolution. We observed major defects in the different compartments of the corticostriatal circuit, from presynaptic dynamics to synaptic structure and transmission and to postsynaptic traffic and signaling, that correlate with altered global synchrony of the network. Importantly, the genetic status of the presynaptic compartment was necessary and sufficient to alter or restore the circuit. This highlights an important weight for the presynaptic compartment in HD that has to be considered for future therapies. This disease-on-a-chip microfluidic platform is thus a physiologically relevant invitro system for investigating pathogenic mechanisms and for identifying drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.