Abstract

The deviation between actual and nominal concentrations of microplastics (MPs), as a long-standing issue, has been critically commented. However, there is still a lack of quantitative assessment and reconciling practice on the deviation. In this study, a total of 210 deviations were recompiled to thoroughly examine this issue. It was shown that up to 81 (39%) deviations exceeded the recommended ±20% variation specification, highlighting that the deviation of MPs should not be neglected. This study attempted to reconcile the deviation based on the most prominent driving factors. Specifically, the game theory-based SHapley Additive exPlanations (SHAP) algorithm identified that the particle size was the most important factor affecting the deviation. Subsequently, at each size magnitude, a significant linear correlation between the logarithmic actual and nominal concentrations was determined, which provided a sound basis for estimating the actual concentration from the nominal one. Furthermore, deviations of different size classes were simulated through 10, 000 points, suggesting that the ±20% deviation variation could be well maintained within a specific concentration range. Moreover, the potential interaction effects between factors were quantified by SHAP interaction values, with more detailed conversion bases proposed. Additionally, several control measures were recommended to reduce the deviation of MPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.