Abstract

Multilayer organic electroluminescent devices derive their advantages over their single-layer counterparts from the processes occurring at heterojunctions in organic media. These processes significantly differ from those in the bulk of the material. This paper presents three-dimensional modeling, numerical simulations, and a discussion of transport and recombination in a system with a heterojunction. We consider partial cross sections for the creation of excitons and exciplexes, and probabilities for recombination in the respective channels. We examine the influence of the energy barrier, electric field, site-energy disorder, and structural disorder at an organic-organic interface on transport and recombination. In particular, we investigate optimal parameter domains for recombination in the exciton channel. The interface roughness, unlike the site-energy disorder, is found to strongly affect the partial cross sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.