Abstract

Tuberculosis (TB) remains among the most deadly health threats to humankind despite availability of several potent antibiotics and a vaccine, bacille Calmette-Guérin (BCG). BCG partially protects children but not adults from the disease. Growing knowledge of the molecular basis of infection, immunity, and pathology in TB has driven various approaches, which strive to complement or replace BCG with more effective vaccines. Three recombinant live TB vaccine candidates have entered clinical trials. These candidates have been genetically engineered to be attenuated, to overexpress TB antigens and/or to secrete bacterial perforins, ultimately seeking to trigger a robust immune response thereby providing long-lasting protection against TB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.